Total No. of Pages: 2

Seat	,
No.	

T.E. (Civil) (Semester - V) Examination, Nov. - 2013 DESIGN OF STEEL STRUCTURES (New)

Sub. Code: 45536

Day and Date: Wednesday, 27 - 11 - 2013 Total Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Attempt any three questions from section I and any three questions from section II.
 - 2) Figures to the right indicate full marks.
 - 3) Use of IS: 800 (1984 & 2007), steel table, IS: 875 allowed.
 - 4) Use of non programmable calculator is allowed.
 - 5) Assume suitable data if required.

SECTION - I

- Explain how wind load is arrived at on roof truss. [6] *Q1*) a) Compare welded connections with rivetted connections. [6] b) [6] Write in short on IS: 800: 1984 & IS: 875. c) Explain in short the 'Lug angle' & its need and design. [6] *Q2*) a) Design a tension member to carry an axial tensile load of 150 kN. The b) member is connected to gusset plate by welding. Design the connection and prepare a neat sketch. [10]
- Q3) a) What is an angle strut? Differentiate between continuous and discontinuous angle strut. [4]
 - b) Calculate safe compressive load carrying capacity of double angle discontinuous strut composed by 2 ISA 80 × 50 × 6 with long leg connected back to back on either side of gusset plate 10 mm thick. The length of strut between centre to centre of intersection is 3 meter and tacking done. [12]

Q4) a) Write in short on curtailment of flange in beam.

[4]

b) A beam span 6 meters has to support a load of 20 kN/meter (including self weight). Design a suitable section for a beam. The beam is laterally supported throughout. Check for shear and deflection is required. Take fy = 250 MPa. [12]

SECTION - II

Q5) Calculate the design forces for the gantry girder using data given below. [16]

i)	Crane capacity	200 kN
ii)	Weight of crane girder	200kN
iii)	Weight of crab	60kN
iv)	Span of crane girder	15 meter
v)	Span of gantry girder	6 meter
vi)	Minimum approach of hook	1.2 meter
vii)	Wheel base	3.0 meter

Crane is electrically operated.

Q6) a) Draw a typical sketch of slab base and explain the design procedure for the same.

- b) A square column 425 mm × 425 mm consists of 4 angles ISA 90× 90 × 10 mm each placed at the corner of square section. The length of column is 6 meters and is hinged at both ends. Determine the safe load it can carry and design a suitable lacing system for connecting the angles. [12]
- Q7) a) Explain in short the moment resistant base and design of anchor bolt. [6]
 - b) Explain in short design procedure to be followed in design of compression member by using IS: 800: 2007. [6]
 - c) Explain the term partial safety factor for materials. [4]
- Q8) a) Find out the design strength of angle $100 \times 100 \times 10$ mm in tension connected to gusset plate 10 mm thick through 100 mm leg using M20 bolt of class 4.6 in a single line. The yield and ultimate strength of steel are 25v MPa and 410 MPa respectively. [10]
 - b) Write on design strength calculation for tension member due to yielding, rupture and block shear. [6]

